31) Since trace are arr buffer solution, you can use the thenderson- Hasselbalch equation

$$
\begin{aligned}
& \text { equation } \left.p H=p k a+\log \frac{[\text { Ba ce }]}{[A C i d]}\right] \\
& p H=\left(-\log 1.8 \times 10^{-5}\right)+\log \frac{0.25}{0.10} \\
& p H=4.74+0.40=5.14
\end{aligned}
$$

$$
\text { D) } \begin{aligned}
\mathrm{pH} & \left.=\rho \mathrm{ka}+\log \frac{[B a B]}{[A C H}\right] \\
\rho H & =4.74+\log \frac{0.10}{0.25} \\
\rho H & =4.34
\end{aligned}
$$

c)

$$
\begin{aligned}
& p H=1.54 \\
& p H=p k a+\log [\text { bank }[\text { [acid] }] \\
& P H=4.74+\log \frac{0.20}{0.080} \\
& P H=5.14
\end{aligned}
$$

d

$$
\begin{aligned}
& p H=\rho k a+\log \frac{\text { [sase }]}{[\text { acid }]} \\
& \rho H=4.74+\log \frac{0.080}{0.20} \\
& P H=4.34
\end{aligned}
$$

33)

$$
\begin{aligned}
& {\left[\mathrm{HC}_{7} \mathrm{HSO}_{2}\right]=\frac{21.5 \mathrm{~g} \mathrm{HC7HSO} 2 \frac{1 m a l}{122.129}}{0.20002}=0.880 \mathrm{~m}}
\end{aligned}
$$

$$
\begin{aligned}
& =1.31 \mathrm{~m}
\end{aligned}
$$

* Since its a buffer, use Henderson-Hassellogicn

$$
\begin{array}{r}
\rho H=\rho K a+\log \frac{\left[\mathrm{C}_{2} \mathrm{HSO}_{2}^{-}\right]}{\left[\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]} \\
\rho H=-\log \left(6.4 \times 40^{-8}+\log \frac{1.31}{0.880}\right. \\
\rho H=4.19+0.173=4.36
\end{array}
$$

$$
35 \text { a) }[\text { Ht }]=\frac{0.010 \mathrm{mul}}{0.2500 \mathrm{~L}}=0.040 \mathrm{~m}
$$

$$
\begin{aligned}
p H & =p K a+\log \frac{[B a c s]}{(A C A)} \\
& =-\log 5.6 \times 10^{-10}+\log \frac{0.010}{0.19} \\
& =9.25-1.29=7.97
\end{aligned}
$$

b)

$$
\begin{aligned}
& p A=p k a+\log \frac{[B a H]}{\text { (Acid] }} \\
& =9.25+\log \frac{0.46}{1.84}=8.73
\end{aligned}
$$

both buffers have the same untwine $p H$ however their buffer capacities are different. -(B) has a larges buffer capacity Since it hate langer buffer components. Buffers with larger buffer capanties can absorb more added Ht ar $0 \mathrm{Ht}^{-}$
37) $p H=p k a+\log \frac{[B a+e]}{[A w d]}$
since buffer components are in same

$$
\begin{aligned}
& \text { volume, } \frac{[B a f e]}{[A C d]}=\frac{\text { mum Bala }}{\text { mol Ac }} \\
& 5.00=-\log \left(\operatorname{lig}_{4.74} \times 10^{-} S\right)+\log \frac{\operatorname{mol} \text { Bale }}{\operatorname{mol} A \operatorname{lid}} \\
& \text { mole } \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=(0.5000 \mathrm{~L})(0.200 \mu)=0100 \mathrm{mo} \\
& 0.26=\log \frac{x}{0.100} \quad 10^{-0.26}=\frac{x}{0.100} \\
& x=0.18 \text { mole } \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \frac{82.03 \mathrm{~g}}{1001}: 1 \mathrm{Sg} \mathrm{NaC2H} \mathrm{H}_{2}
\end{aligned}
$$

(3) CSHSNHt $\rightleftharpoons H^{+}+\mathrm{C}_{\text {S }} \mathrm{CH}_{S N}$

$$
\begin{aligned}
& K_{a}=\frac{1.0 \times 10^{-4}}{1.7 \times 10^{-9}}=5.9 \times 10^{-6} \\
& \rho \mathrm{Ka}_{\mathrm{a}}-\log \left(5.9 \times 10^{-6}\right)=5.23 \\
& p H=\rho k a+\log \frac{\left[C_{S H S N}\right]}{\left[\mathrm{CSHSN}_{S} H^{+}\right]} \\
& \text {d) } \left.4.5=5.23+\log \frac{[B C H}{[\text { Acid }]}\right] \\
& 10^{-0.7]}=\frac{[\text { Bayl] }}{\text { [Acad] }]}=0.19
\end{aligned}
$$

b)

$$
\begin{aligned}
& S-00=S .2]+\log \frac{[\text { [sade }]}{[\text { ACA }]} \\
& 10^{-0.23}=\frac{[\text { Basi] }}{[A c i A]}=0.59
\end{aligned}
$$

c)

$$
\begin{aligned}
& \text { c) } 5.23=5.23+\log \frac{[\text { Bas }]}{[\text { And] }]} \\
& 10^{-0.00}=\frac{[\text { Case] }}{[\text { Aad }]}=1.0 \\
& \text { d) } 5.50=5.23+\operatorname{los} \frac{\text { (Base] }]}{[A+A d]} \\
& 10^{0.27}=\frac{[\text { Bas }]}{[\text { Aan }]}=1.9
\end{aligned}
$$

41. A best buffer has large and equal quantities of weak acid and conjugate base. Since [Acid] = [Base] for the best buffer...
$\mathrm{pH}=\mathrm{pKa}+\log [$ Base $] /[$ Acid $]=\mathrm{pKa}+0$
*** for the best buffer solution, pH is equal to pKa (or close to it)
If we want a buffer with a $\mathrm{pH}=7.00$, we want a pKa as close to 7 as possible (Ka around 1.0×10^{-7}) HOCl has a $\mathrm{Ka}=3.5 \times 10^{-8}$ and $\mathrm{pKa}=7.46$ $7.00=7.46+\log [$ Base $] /[$ Acid $]=10^{-0.46}=0.35$ So any $\left[\mathrm{OCl}^{-}\right] /[\mathrm{HOCl}]$ value with a ratio of 0.35 to 1 will work
