Name \qquad Date \qquad

MORE REVIEW

1. Calculate the pH of each of the following solutions in water.
a. $\quad 0.10 \mathrm{M} \mathrm{HCl}$
b. 5.0 M HCl
c. $1.0 \times 10^{-11} \mathrm{M} \mathrm{HCl}$

b) $p^{H}=-\log (5-0)=-0.70$
() $\mathrm{pH}=-\log \left(1-0 \times 10^{-\cdots}\right)=x+7$
2. Calculate the pH of each of the following solutions in water.
a. $\quad 0.10 \mathrm{M} \mathrm{NaOH}$
b. 5.0 M NaOH
c. $1.0 \times 10^{-11} \mathrm{M} \mathrm{NaOH}$
b) pot $=-1$ vS (S.O) $=-0.70 \quad p H=14.7$
$>$ pot t $\gg \log \left(1-0 \times 10^{-11}\right)=11 \quad p H=\$$
3. A solution is prepared by adding 50.0 ml of 0.050 M HCl to 150.0 ml of $0.10 \mathrm{M} \mathrm{HNO}_{3}$.

Calculate the concentrations of all species in this solution.
HCl

$$
\begin{aligned}
& \text { Cl } \mu=\frac{m 06 s}{L} \\
& 0.050 \mathrm{~m}=\frac{x}{0.050 \mathrm{~L}} \\
& x=0.0025 \mathrm{moles} \mathrm{HC}
\end{aligned}
$$

$$
\mathrm{HNO}_{3} \quad \mu=\frac{\operatorname{movs}}{L}
$$

$$
0.10 \mathrm{~m}=\frac{x}{0.150 \mathrm{~L}}
$$

$\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$
$\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}$
$\left[H_{+}\right]=\frac{0.017 S_{\text {moles }} S}{0.200<}=0.0875 \mathrm{M}$
$\left[c_{1-}\right]=\frac{0.0025 \mathrm{moles}}{0.200 \mathrm{~L}}=0.0125 \mathrm{~m}$

$$
\left[\mathrm{Nu}_{3}^{-}\right]=\frac{0.015 i n 065}{0.2002}=0.075 \mathrm{~m}
$$

4. Formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right)$ is secreted by ants. Calculate $\left[\mathrm{H}^{+}\right]$and the pH of a 0.025 M solution of formic acid ($\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}$)

$$
\begin{aligned}
& K_{a}=\frac{\left[\mathrm{H}^{1}\right][\mathrm{HCO}}{2}-7 \\
& \begin{array}{ccc}
\mathrm{HCO} & \mathrm{H} \rightarrow & \mathrm{H}^{+} \\
\mathrm{H} & +\mathrm{HCO} \\
2
\end{array}{ }^{-} \\
& 1.8 \times 10^{-4}=\frac{x^{2}}{.025-(8)} \\
& 5 \% \sqrt{ } \\
& .05(.025)=.00125 \\
& x=.00212 \\
& 1.80 \times 10^{-4}(.025-x)=x^{2} \\
& 4.5 \times 10^{-6}-1.80 \times 10^{-4} x-x^{2}=0 \\
& x^{2}+1.80 \times 10^{-4} x-4.5 \times 10^{-6}=0 \\
& \frac{-\left(1.80 \times 10^{-4}\right) \pm \sqrt{\left(+1.8 \times 10^{-4}\right)^{2}-4(1)\left(-4.5 \times 10^{-6}\right)}}{2} \\
& \frac{-1.8 \times 10^{-4} \pm 0.00425}{2} \\
& x=2.04 \times 10^{-3} \\
& p H=-\log \left(2.04 \times 10^{-3}\right)=2.69
\end{aligned}
$$

5. A 0.20 M solution of a weak acid is 2.5% dissociated. Calculate the K_{a}.
6. Arsenic acid $\left(\mathrm{H}_{3} \mathrm{AsO}_{4}\right)$ is a triprotic acid with $\mathrm{K}_{\mathrm{a} 1}=5 \times 10^{-3}, \mathrm{~K}_{\mathrm{a} 2}=8 \times 10^{-8}$, and $\mathrm{K}_{\mathrm{a} 3}=6 \times$ 10^{-10}. Calculate $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}_{3} \mathrm{AsO}_{4}\right],\left[\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}\right],\left[\mathrm{HAsO}_{4}^{-2}\right]$ and $\left[\mathrm{AsO}_{4}^{-3}\right]$ in a 2.0 M arsenic acid solution.

$$
\begin{array}{ccc}
\mathrm{H}_{3} A \mathrm{So}_{4} & \rightleftharpoons \mathrm{H}^{+} & +H_{2} A_{5} \mathrm{sO}_{4}^{-} \\
1 & 0 & 0 \\
\mathrm{~B}-\infty & +x & +x \\
E 2-0-x & x & x
\end{array}
$$

$$
\begin{array}{cccc}
H_{2} A 50 & \sim & H+ & H A s o u^{-2} \\
10.10 & 0-10 & 0 \\
C-x & +x & 0.10+x & x \\
E O .10-x & & x
\end{array}
$$

* has * be insicnficant

$$
\begin{aligned}
& K_{a 2}=\frac{[H x]\left[\mathrm{HASO}_{4}-2\right]}{\left[\mathrm{H}_{2} \mathrm{ASO}_{4}-1\right]}-\frac{(0.1 \phi(x)(x)(x)}{0 / 10[\rightarrow)} \\
& x=K_{a_{2}}=8 \times 10^{-\delta} \mu=\left[H A S O_{i}^{-2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& K_{a_{1}}=\frac{\left[H_{+}\right] H_{2} A_{s O_{4}}}{\left[H_{3} A_{s} O_{4}\right]} \\
& 5 \times 10^{-3}=\frac{x^{2}}{2-2-x} \\
& x=0.10 \mu=\left[H^{+}\right]=\left[\mathrm{H}_{2} A \mathrm{SO}_{4}^{-}\right] \\
& \text {so. } \frac{0-10}{2-0} \times 100=50_{0} \quad\left[H_{3}+50_{7}\right]=2.0 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { E } 0.20-x x x \\
& x=(0.20)(0.025=0.005 \\
& =\frac{(0.00)^{2}}{0.20} \\
& =1.25 \times 10^{-4}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cccc}
H A S 0^{-2} & \sim & H+ & A S O 0^{-3} \\
1 \& \times 10^{-8} & 0.10 & 0 \\
C-x & +x & +x \\
E \& \times 10^{-1}-x & 0.10+x & x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 6 \times 10^{-10}=\frac{(0.10+x)(x)}{8 \times 10^{-8} \rightarrow \rightarrow} \\
& x=4-8 \times \cdot 0^{-16} \sim\left[\mathrm{FsO}_{4}^{-3}\right]
\end{aligned}
$$

- has to be insisurfcara

$$
\begin{aligned}
& K_{\omega}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}_{-14}\right] \\
& \text { COl- })=\frac{1 \times 10^{-14}}{0.10}=1 \times 10^{-13} \mathrm{M}
\end{aligned}
$$

7. Calculate the pH of a $2.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-} \\
& {\left[\mathrm{H}_{2} \mathrm{SO}_{7}\right]=[\mathrm{H}+]=2.0 \mathrm{M}}
\end{aligned}
$$

$$
\begin{aligned}
& K_{a}=\frac{[H+]\left[\mathrm{SO}_{4}^{-2}\right]}{\left[\mathrm{HSO}_{4}^{-}\right]}=1.2 \times 10^{-2} \\
& =\frac{(2-6-x)(x)}{12-0-2} \\
& s^{2} 0 \frac{1.2 \times 10^{-2}}{2-0} \times 00=0.60^{2} \\
& {[4+]=2.0 \sim} \\
& p_{H}=-\operatorname{los}(2-0)=-0.30
\end{aligned}
$$

8. Calculate the pH of a solution that contains 1.23 M benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \quad\left(\mathrm{K}_{\mathrm{a}}=\right.$ $\left.6.14 \times 10^{-5}\right)$ and $.713 \mathrm{M}^{2}$ arsenious acid $\mathrm{H}_{3} \mathrm{AsO}_{3}\left(\mathrm{~K}_{\mathrm{a}}=6.0 \times 10^{-10}\right)$. What is the concentration of the benzoate ion $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right)$, hydroxide ion $\left(\mathrm{OH}^{-}\right)$and arsenite ion

$$
\begin{aligned}
& \left(\mathrm{H}_{2} \mathrm{AsO}_{3}{ }^{-}\right) \text {? } \\
& \mathrm{C}_{6} \mathrm{HsCOOH}_{5} \mathrm{COOH}+\mathrm{H}^{+} \mathrm{CHscoo}^{-} \quad \mathrm{K}_{2}=6.14 \times 10^{-5} \\
& \mathrm{H}_{3} \mathrm{AsO}_{3} \geqslant \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{ASO}_{3} \\
& K_{a}=6.0 \times 10^{-10} \\
& K \omega=1 \times 10^{-14} \\
& \mathrm{H}_{2} 0 \Rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-} \\
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \\
& 1.23 \\
& \text {-x } \\
& \text { 1.23-7 } \\
& K_{a}=\frac{\left[\mathrm{H}_{+}\right]\left[\mathrm{C}_{6} \mathrm{Hs}_{5} \mathrm{OO}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{Hs}_{5} \mathrm{COO}^{-}\right]} \\
& 6-14 \times 10^{-5}=\frac{x^{2}}{1.23-x} \\
& x=8.7 \times 10^{-3} \mu=\left[\omega_{t}\right]=\left\langle C_{6} H_{5} \mathrm{COO}^{-}\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\times \\
& 8.7 \times 10^{-3}+7 \\
& K_{c}=\frac{[\mathrm{HT}]\left[\mathrm{H}_{2} \mathrm{ASO}_{3}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{ASO}_{3}\right]} \\
& 6.0 \times 10^{-10}=\frac{\left(8.7 \times 10^{-3}(\lambda)(\lambda)\right.}{(0.713)} \\
& x=4.9 \times 10^{.8} \mathrm{~m}=\left[\mathrm{H}_{2} \mathrm{ArO}_{3}^{-}\right] \\
& \text {soho }=\frac{4.9 \times 10^{-8}}{0.213} \times 1 \times 0=6.9 \times 10^{-6,0} 5 \\
& \text { [oH-] }=\frac{1 \times 10^{-14}}{8.7 \times 10^{-3}}=1.15 \times 10^{-12} \mathrm{M} \\
& \rho H=-\log \left(8.7 \times 10^{-3}\right)=2.06
\end{aligned}
$$

9. Calculate the $\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}^{+}\right]$and the pH of 0.20 M solution of hydroxylamine $\left(\mathrm{HONH}_{2}, \mathrm{~K}_{\mathrm{b}}=\right.$ 1.1×10^{-8})
$\mathrm{HONH}_{2}+$
10.20

Cox

$$
\begin{aligned}
& {[\mathrm{OH}-]=\frac{K \omega}{C H^{+} J}=\frac{1 \times 10^{-14}}{4.69 \times 10^{-5}}=2.13 \times 10^{-10} \mathrm{~m}}
\end{aligned}
$$

10. Calculate the concentration of all species and the pH of a $0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$ solution. The Kb for ammonia is 1.8×10^{-5}

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& K_{a}=\frac{K \omega}{K_{6}}=\frac{1 \times \omega^{-14}}{1.8 \times 10^{-5}}=5.56 \times 10^{-10}=\frac{\left.C H^{+}\right]\left[H_{J}\right]}{\left.C \sim H H^{+}\right]} \\
& 5.56 \times 10^{-10}=\frac{x^{2}}{0.10-x} \\
& x=7.5 \times 10^{-6} \mathrm{~m}=[\mathrm{H}+]
\end{aligned}
$$

Sol. $\frac{7.5 \times 15^{-6}}{6.10} \times 10=7.5 \times 10^{-307, ~}$

$$
p H=-\log \left(7.5 \times 10^{-6}\right)=5.12
$$

11. Calculate the concentration of all species and the pH in a 0.010 M solution of NaN_{3}. The Ka for hydrozoic acid $\left(\mathrm{HN}_{3}\right)$ is 1.9×10^{-5}.

$$
\begin{aligned}
& \mathrm{NaN}_{3} \rightleftharpoons \mathrm{Nat}+\mathrm{N}_{3}^{-} \\
& \mathrm{N}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HN}_{3}+\mathrm{OH}^{-} \\
& K_{b}=\frac{K_{\omega}}{K_{a}}=\frac{1.0 \times 10^{-14}}{1.9 \times 10^{-5}}=5.3 \times 10^{-10}
\end{aligned}
$$

$$
\begin{aligned}
& K_{b}=\frac{\left[1 \mathrm{~N}_{3}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{N}_{3}-\right]}=5.3 \times 10^{-10}=\frac{x^{2}}{0.010-x} \\
& x: 2.3 \times 15^{-6} \mu=\left[0 H^{-}\right] \\
& 0.05(0.010)=5 \times 10^{-4} \\
& {\left[\mathrm{HN}_{3}\right]=\left[\mathrm{OH}^{-}\right]=2.3 \times 10^{-6} \mathrm{~m}} \\
& \text { ['Nat] }=0.010 \mathrm{~m} \\
& {\left[N_{3}{ }^{-}\right]=0.010} \\
& {\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{-14}}{2.3 \times 10^{-6}}=4.3 \times 10^{-9} \mathrm{~m}}
\end{aligned}
$$

