MORE REVIEW

- 1. Calculate the pH of each of the following solutions in water.
 - a. 0.10 M HCl
 - b. 5.0 M HCl
 - c. 1.0 x 10⁻¹¹ M HCl

HCL \longrightarrow H⁺ + CL⁻ CHCLJ = CH⁺J $a \rightarrow \rho H = -109(0-10) = 1$ $b \rightarrow \rho H = -109(5-0) = -0.70$ Calculate the pH of each of the following solutions in water. 2. a. 0.10 M NaOH b. 5.0 M NaOH c. 1.0 x 10⁻¹¹ M NaOH $Nach \rightarrow Nat + 0H^{-1}$ $CNach = Cout = 0H^{-1}$ p + 105(0-10) = 1 p + 13 p + 105(5.0) = -0.70 p + 14.7= - 10g (1-0 x 10") = 11 pH= \$7 pott

3. A solution is prepared by adding 50.0 ml of 0.050 M HCl to 150.0 ml of 0.10 M HNO₃. Calculate the concentrations of all species in this solution.

M= mous

H+ + NO7

Here
$$M := \underbrace{M : OG}_{L}$$

 $0.050M := \underbrace{K}_{0.050L}$
 $X := 0.0025 \mod 4 \operatorname{Here}$
 $Here M + + ere M + + ere M + + M = \underbrace{M : OG}_{L}$
 $E + 4] := \underbrace{O.0175 \mod 4}_{0.200L} := 0.0875 M$
 $E e : J := \underbrace{O.025 \mod 4}_{0.200L} := 0.0175 M$
 $E : O.015 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.015 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.015 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \mod 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \liminf 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \liminf 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \liminf 4 : M = \underbrace{M : OG}_{L}$
 $E : O.0175 \liminf 4 : M : OG}_{L}$
 $E : O.0175 \liminf 4 : M : OG}_{L}$
 $E : O.0175 \liminf 4 : O.0175 \bigwedge 4 : O.0175 \bigwedge 4 : O.0175 \amalg 4 : O.0175$

4. Formic acid (HCO₂H) is secreted by ants. Calculate [H⁺] and the pH of a 0.025 M solution of formic acid ($K_a = 1.8 \times 10^{-4}$)

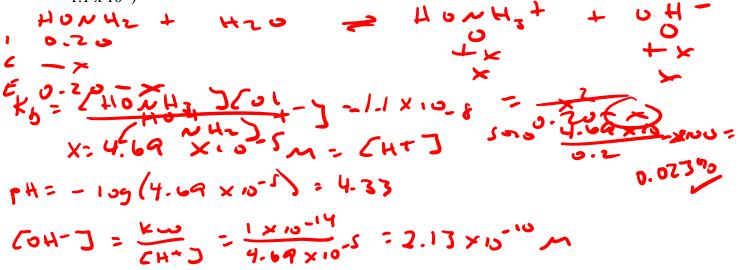
$$K_{a} = \frac{[H^{1}] [H(0_{2}^{-}]]}{[H(0_{2}H]]} \qquad \begin{array}{c} H(0_{2}H \rightarrow H^{+} + H(0_{2}^{-}) \\ I , 025 & 0 & 0 \\ \in & -x & +x & +x \\ \vdots & 025 - x & x & x \\ 1.8 \times 10^{-4} = \frac{x^{2}}{.025} \\ x = & 00212 & 5\% \\ x = & 00212 & FAILS! \\ 1.80 \times 10^{-4} & (.025 - x) = x^{2} \\ 4.5 \times 10^{-6} & -1.80 \times 10^{-4} x - x^{2} = 0 \\ x^{2} + 1.80 \times 10^{-4} x - 4.5 \times 10^{-6} = 0 \\ - (1.80 \times 10^{-4}) \pm ((+1.8 \times 10^{-4})^{2} - 4(1)(-4.5 \times 10^{-6})) \\ - \frac{2}{.00} \\ x = 2.04 \times 10^{-3} \\ pH = -10g (2.04 \times 10^{-3}) = 2.69 \end{array}$$

5. A 0.20 M solution of a weak acid is 2.5% dissociated. Calculate the Ka.

64+ Kc 3 **H**A - 7 E 0.20-x × x= (0.20 × 0.025 20.005 1.25

6. Arsenic acid (H₃AsO₄) is a triprotic acid with $K_{a1} = 5 \times 10^{-3}$, $K_{a2} = 8 \times 10^{-8}$, and $K_{a3} = 6 \times 10^{-10}$. Calculate [H⁺], [OH⁻], [H₃AsO₄], [H₂AsO₄⁻], [HAsO₄⁻²] and [AsO₄⁻³] in a 2.0 M arsenic acid solution.

H₃A son
$$\rightarrow$$
 H⁺ + H₂A son
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.0
1 2.


+ ASO - 3 Η. 1 & x 10 8 0 - 0. La < - = E 8x10 - = 0.1044 بر Kay: (4- JCASOL-3) CHASO] (0.10 f -) (+) 6×10-8x 10-5 x= 4-8 x.5 h = (AS 3, -3] * has to be insignificant Kw: CH+ JCOH] - 1 × 15-13M $C_{0}H^{-} = \frac{1 \times 10^{-1} Y}{0.10}$

7. Calculate the pH of a 2.0 M H₂SO₄ solution.
H₂ SO₄
$$\longrightarrow$$
 H⁴ + H SO₄
(H₂ So₄) = (H⁴] = 2.0M
H SO₄ \longrightarrow H⁴ + Co₄⁻¹
2.0 0
(-x + x + x)
E 2.0 - x + x + x
Ka = (H⁴) I SO₄ \longrightarrow 1.2x io^{-2}
(H SO₄ \longrightarrow 1.2x io^{-2}
 $\xrightarrow{(-+++)} CH$ SO₄ $\xrightarrow{(-+++)} SO4$ $\xrightarrow{(-++)$

8. Calculate the pH of a solution that contains 1.23 M benzoic acid, C_6H_5COOH (K_a = 6.14 x 10⁻⁵) and .713 M arsenious acid H₃AsO₃ (K_a = 6.0 x 10⁻¹⁰). What is the concentration of the benzoate ion (C₆H₅COO⁻), hydroxide ion (OH⁻) and arsenite ion (H₂AsO₃⁻)?

~

9. Calculate the [OH⁻], [H⁺] and the pH of 0.20 M solution of hydroxylamine (HONH₂, $K_b = 1.1 \times 10^{-8}$)

10. Calculate the concentration of all species and the pH of a $0.10~M~NH_4NO_3$ solution. The Kb for ammonia is $1.8~x~10^{-5}$

11. Calculate the concentration of all species and the pH in a 0.010 M solution of NaN₃. The Ka for hydrozoic acid (HN₃) is 1.9×10^{-5} .

$$Na N_{3} = Na^{+} + N_{3}^{-}$$

$$N_{3}^{-} + H_{20} = HN_{3} + 0H^{-}$$

$$K_{b} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{1.9 \times 10^{-5}} = 5.3 \times 10^{-10}$$

$$N_{3}^{-} + H_{-0} = HN_{3} + 0H^{-}$$

$$V_{3}^{-} + H_{-0} = HN_{3} + 0H^{-}$$

$$V_{4}^{-} = \frac{1.0N_{3} \int 0H^{-} \int z 5.3 \times 10^{-10} + \frac{X^{2}}{0.010 - X}$$

$$K_{b} = \frac{(HN_{3}) \int 0H^{-} \int z 5.3 \times 10^{-10} + \frac{X^{2}}{0.010 - X}$$

$$X \cdot Z.3 \times 10^{-6} M = C0H^{-} \int z 5.3 \times 10^{-6} M$$

$$[Na^{+}] = 0.010 M$$

$$[Na^{+}] = 0.010 M$$

$$[N_{3}^{-}] = 0.010$$

$$EH^{+} \int z \frac{1.0 \times 10^{-14}}{2.3 \times 10^{-6}} = 4.3 \times 10^{-6} M$$