GASES AND EQUILIBRIUM ESSAYS

14a) 2 pts
CO_{2}
Because all the balloons contain the same number of molecules (moles) and CO_{2} molecules are the heaviest.

14b) 2 pts
All are equal
Because same temperature, therefore same average kinetic energy
Note: restatement of "same conditions" does not earn 2 points

14c) 2 pts
CO_{2}
Either:
It has more e-, hence it is most polarizable
It has the strongest intermolecular (London) forces
Note: -also allowable are "polar bonds" inelastic collisions"
-claiming larger size or larger volume does not earn 2 points

14d) 2 pts
Не
-greatest movement through balloon wall
-smallest size
-greatest molecular speed
-most rapid effusion (Graham's Law)
-2 pts
Reducing temperature of a gas reduces the average kinetic energy (or velocity) of the gas molecules. This would reduce the number (or frequency) of collisions of gas molecules with the surface of the balloon (or decrease the momentum change that occurs when the gas molecules strike the balloon surface). In order to maintain a constant pressure vs the external pressure, the volume must decrease.
-2 pts
The molecules of the gas do have volume (1 pt for this) when they are cooled sufficiently, the forces of attraction that exist between them cause them to liquify or solidify ($2^{\text {nd }} p t$)
-2 pts
The molecules of gas are in constant motion, so the HCl and NH_{3} diffuse along the tube. Where they meet $\mathrm{NH}_{4} \mathrm{Cl}$ is formed. Since HCl has a higher molar mass, its velocity (ave) is lower. Therefore, it doesn't diffuse as fast as NH_{3}.
a) $\quad P V=n R T$

$$
\begin{gathered}
P_{H_{2}}=745-23.8=721.2 \mathrm{mmHg} \\
(721 \mathrm{mmHg})(0.09002)=n\left(62.4 \frac{\mathrm{~mm} \mathrm{H}_{\mathrm{g}} \mathrm{~L}}{\mathrm{molk}}\right)(298 \mathrm{k}) \\
n=3.49 \times 10-3 \mathrm{mu} 6 \mathrm{H}_{2}
\end{gathered}
$$

b) $p v=n R T$

$$
\begin{gathered}
(23.8 \mathrm{mmltg})(0.0900 \mathrm{~L})=n\left(62.4 \frac{\mathrm{~mm} \mathrm{~m}_{\mathrm{c}} \mathrm{~L}}{\mathrm{molk}}\right)(298 \mathrm{k}) \\
n=1.15 \times 10^{-4} \mathrm{~mol} \mathrm{~L}_{20}
\end{gathered}
$$

$$
1.15 \times 10^{-4} \text { mole } H_{20}\left(\frac{6.02 \times 10^{23} p \text { ant }}{1 \mathrm{mo}^{6} \mathrm{H}_{20}}\right)=6.93 \times 10^{19}
$$ molecules $\mathrm{H}_{2} \mathrm{O}$

c) $\frac{v_{H_{2}}}{v_{H_{2} O}}=\sqrt{\frac{\mu_{H_{2}}}{\mu_{H_{2}}}}=\sqrt{\frac{18.02}{2.02}}$

$$
\frac{U_{H_{2}}}{U_{H_{2} O}}=\frac{2.99}{1}
$$

d) $\mathrm{H}_{2} \mathrm{O}$ deviates the most from Idoal bihauror because of the polan cosclert bords within - I he molewle whech leads to greader inaermolewlar atisractions.

17a) $: C \equiv 0: \quad \therefore O=C=\ddot{O}$.
b) carbon dioxide has a
hear shape
c) $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ carbonic acid is a wrath a cid

6 pts
18 given: mules $\mathrm{O}_{2}(\mathrm{~g})$: mols $\mathrm{H}_{2}(\mathrm{~g})$
$0.500<$ container

$$
\begin{aligned}
& 25^{\circ} \mathrm{c} \\
& 2 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& P_{T}=1,146 \mathrm{mmHg} \\
& P_{H_{2} \mathrm{O}}=24 \mathrm{mmHg}
\end{aligned}
$$

a) $6 \mathrm{p}+\mathrm{s} 2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$

Initially: moles $\mathrm{O}_{2}=$ moles H_{2}
But: 2 moles $\mathrm{H}_{2}(\mathrm{~g})$ reacts for every mol $\mathrm{O}_{2}(\mathrm{~g})$

* O_{2} is left over

$$
\begin{aligned}
& P_{\mathrm{T}}=P_{\mathrm{H}_{2}}+P_{\mathrm{O}_{2}}+P_{\mathrm{H}_{2} \mathrm{O}} \\
& 1146=P_{\mathrm{H}_{2}}+P_{\mathrm{O}_{2}}+24 \\
& P_{\mathrm{H}_{2}}+P_{\mathrm{O}_{2}}=1122
\end{aligned}
$$

$\frac{1122}{4}=P_{0_{2}}$ left $\left(1 / 2\right.$ of initial O_{2} which is $1 / 2$ of total)

$$
\begin{gathered}
P_{O_{2}}=280.5 \mathrm{mmHg}=0.369 \mathrm{~atm} \\
P U=n R T \\
(0.369 \mathrm{~atm})(0.52)=n\left(0.0821 \frac{2 . a+m}{\mathrm{~mol} k}\right)(298 \mathrm{~K}) \\
n=7.54 \times 10^{-3} \mathrm{moles}
\end{gathered}
$$

$$
\begin{aligned}
& \text { b) }(2 p+5)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{0 r}{P V}=n R T \\
& \begin{array}{l}
p V=n=R 1 \\
p(0.52)=\left(7.54 \times 10^{-3} \mathrm{~mole}\right)\left(0.0821 \frac{\mathrm{L.a+m}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(363 \mathrm{~K})
\end{array} \\
& P=0.45 \mathrm{~atm}=342 \mathrm{mmH}_{\mathrm{H}} \\
& P_{T}=P_{0_{2}}+P_{H_{2 O}}=342+526=868 \mathrm{~mm} H_{\mathrm{g}}
\end{aligned}
$$

c)

$$
\begin{aligned}
& p V=n R T \\
& (0.692 \mathrm{~atm})(0.50 \mathrm{~L})=n\left(0.0821 \frac{\mathrm{~L} \mathrm{\cdot a} \mathrm{\cdot m}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(363 \mathrm{k}) \\
& n=0.0116 \mathrm{~mol}
\end{aligned}
$$

(19) $\mathrm{SbCl}_{5(9)} \rightleftharpoons \mathrm{SbCl}_{3(9)}+\mathrm{Cl}_{2}(\mathrm{~g})$
given: $89.7 \mathrm{~g} \mathrm{Sb95} \quad($ mw $=299.0)$
15.0 L container

$$
1820 \mathrm{C}=455 \mathrm{~K}
$$

a) $4 p+s$

1) $89.7 \mathrm{~g} \mathrm{5bCl}\left(\frac{1 \mathrm{~mol}}{299.0 \mathrm{~g}}\right)=0.300 \mathrm{~mol} \mathrm{SbCl}_{5}$

$$
\left[s b C l_{s}\right]_{0}=\frac{0.300 \mathrm{~mole}}{15.02}=0.0200 \mathrm{M}
$$

2) $p=\frac{n R T}{V}=\frac{(0.300 \mathrm{~mol})\left(0.0821 \frac{\mathrm{al} 1 \mathrm{~m} .2}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(455 \mathrm{~K})}{(15.0 \mathrm{~L})}$
$p=0.747 \mathrm{~atm}$
b) $3 \rho+5$

$$
\begin{aligned}
& 3 \rho+s \\
& {\left[s b C l_{3}\right] }=\left[\mathrm{cl}_{2}\right]=\left(0.0200 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)(0.292)= \\
&=5.84 \times 10^{-3} \mathrm{M} \\
& {\left[\mathrm{SbCl} \mathrm{~s}_{5}\right] }=\left(0.0200 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)(0.708) \\
&=1.42 \times 10^{-2} \mathrm{M} \\
& K_{c}=\frac{\left[\mathrm{Sb}\left(\mathrm{I}_{3}\right]\left[\mathrm{Cl}_{2}\right]\right.}{[\mathrm{Sb}(15}=\frac{\left(5.84 \times 10^{-3}\right)^{2}}{\left(1.42 \times 10^{-2}\right)} \\
& K_{c}=2.41 \times 10^{-3}
\end{aligned}
$$

05

$$
\begin{aligned}
& P_{S b C 1_{3}}=P_{c_{1}}=(0.747 a+m)(0.292)=0.218 a+m \\
& P_{\text {sbC15 }}=(0.747 a+m)(0.708)=0.529 a+m
\end{aligned}
$$

$$
\begin{aligned}
& K_{c}=0.117 \\
& \text { add } \mathrm{Cl}_{2} \text { ? So } \mathrm{SbCl}_{3}=0.700 \\
& K_{c}=\frac{\left[\mathrm{SbCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[5 b c 1_{5}\right]}=0.117
\end{aligned}
$$

15) $\mathrm{NH}_{4} \mathrm{HS}_{(\mathrm{s})}=\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$

$$
\Delta H^{\circ}=+93 k J
$$

@ equilibrium at $25^{\circ} \mathrm{C}$
solid NHyHS still in Container
a) 2 pts

The equilibrium pressure of NH_{3} would be unaffected $\mathrm{Kp}=\left(\mathrm{P}_{\mathrm{NH} 3}\right)\left(\mathrm{P}_{\mathrm{H} 2 \mathrm{~S}}\right)$
The amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ present does not affect the equilibrium.
b) 2 pts

The equilibrium pressure of NH_{3} would decrease. In order for the pressure equilibrium constant, Kp , to remain constant, the equilibrium pressure of NH_{3} must decrease when the pressure of $\mathrm{H}_{2} \mathrm{~S}$ is increases.
c) 2 pts

The mass of $\mathrm{NH}_{4} \mathrm{HS}$ increases. A decrease in volume causes the pressure of each gas to increase. To maintain the value of the pressure equilibrium constant, Kp, the pressure of each of the gases must decrease. That decrease is realized by the formation of more $\mathrm{NH}_{4} \mathrm{HS}$ (a complete explanation of LeChatelier's Principle is also acceptable)
d) 2 pts

The mass of $\mathrm{NH}_{4} \mathrm{HS}$ decreases because the endothermic reaction absorbs heat and goes nearer to completion (to the right) as the temperature increases.
16) $\mathrm{NH}_{4} \mathrm{HS}_{(5)} \longrightarrow \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{(9)}$
a) $\mathrm{NH}_{4} \mathrm{HS}$ @ $25^{\circ} \mathrm{C}$
$P_{T}=0.659$ atm @ equilibrivm

$$
\begin{aligned}
& K_{P}=\left(P_{\mathrm{NH}_{3}}\right)\left(P_{\mathrm{H}_{2} \mathrm{~S}}\right) \\
& \quad P_{\sim H_{3}}=P_{\mathrm{H}_{2} S}=\frac{0.659}{2}=0.330 a+m \\
& K_{P}=(0.330 a+m)(0.330 a+m)=0.109 a \text { tmm }^{2}
\end{aligned}
$$

b added NH_{3}
at equilibrivim $P_{\mathrm{NH}_{3}}=2 P_{\mathrm{H}_{2}} s$

$$
(2 x)(x)=0.109
$$

$$
\begin{aligned}
x & =0.233 \text { atm }=P_{\mathrm{H}_{2} \mathrm{~S}} \\
2 x & =0.466 \mathrm{~atm}=P_{\mathrm{NH}_{3}}
\end{aligned}
$$

(c) $\mathrm{NH}_{3}(9)+\mathrm{H}_{2} \mathrm{~S}(9)$
1.00 L

$$
25^{\circ} \mathrm{C}
$$

$P_{\sim H_{3}}=0.5 \mathrm{atma}$
$\mathrm{P}_{\mathrm{H}_{2} S}=0.5$ ath
equilibriom pressure of $\mathrm{NH}_{3}=$ equilibrium pressure $H_{2} S=0.330 a$ trm
$P_{\mathrm{rH}_{3}}$ that has reacted $=P_{\mathrm{H}_{2}} S$
$=0.500 \mathrm{arm}-0.330 \mathrm{~atm}=0.170$ arma

$$
n=\frac{P V}{R T}=\frac{(0.170 a+\min (1.002}{\left(0.0821 \frac{1+2.2}{\text { mol. }}\right)(298 \mathrm{~L})}=6.95 \times 10^{-3} \mathrm{mul}
$$

