A.
$$7pts$$
 0.160M Solin $(H_3NH_3 + 4.790)$
0.160M $(0.047): 7.5 \times 10^{-3}M$ [CH_3NH_3]: 0.16-7.5×10^{-3}
7.5 × 10⁻³M: (CH_3NH_3⁺] = (OH²) = 0.152
[H_20t] = $\frac{1.0 \times 10^{-14}}{7.5 \times 10^{-3}} = 1.3 \times 10^{-12}M$
pH = 11.89

B. 3PHS

$$K_b = \frac{CCH_3 NH_3^+][OH^-]}{ECH_3 NH_2]}$$

 $K_b = \frac{(7.5 \times 10^{-3})^2}{0.152} = 3.7 \times 10^{-4}$

$$K_{b} = \frac{\sum (H_{3} \wedge H_{3}^{+}] \{0\}}{\sum (H_{3} \wedge H_{2}^{+}]}$$

$$3.7 \times 10^{-4} = \frac{(0.20)(x)}{0.20}$$

$$X = [0H^{-}] = 3.7 \times 10^{-4}$$

0.20 mole
$$CH_3 MH_2$$

0.20 mole $CH_3 MH_3 (1)$
WM La $(0+1)_3 PP+$
KSP = $(La+3) [O+1-3^3 = 1 \times 10^{-19}]$
Q = $\left[\frac{0.050}{1.00}\right] [3.7 \times 10^{-12}]^3$
Q = 2.5 × 10⁻¹²
Q > KSP
YPS, La $(0+1)_3 PP+S$

25.

a) two points

 1 S increases

Dissolving converts highly organized solid to less organized hydrated ions

ÓR

dissociates, break down, etc.

OR

less particles => more particles

OR

¹G negative, ¹H positive => - T^1S negative => ¹S positive

b) two points

Ksp decreases

lowering T decreases the solubility since the reaction is endothermic

OR

if T decreases, - T¹S becomes less negative or ¹G becomes

more positive, i.e., less soluble; Ksp decreases

c) two points

There is no effect on $[I^-]$

PbI2 is a solid; its concentration does NOT change on addition of more PbI2

OR

PbI2(s) is NOT included in the expression for Ksp or Q OR

the solution is saturated => no more solid will dissolve d) two points

¹G becomes more positive (increases, gets larger, etc.)

Due to the common ion effect; the increase in [Pb2+] shifts the equilibrium to the left.

OR

the reverse reaction becomes more spontaneous as [Pb2+] increases due to the common ion effect

a)

 $5.00 \times 10^{-3} \text{ mol } H_2C_2O_4 = 1.00 \times 10^{-2} \text{ mol } H^+ = 1.00 \times 10^{-2} \text{ mol } OH^-$ 1.00 x $10^{-2} \text{ mol } OH^- / 0.400 \text{ M} = 0.0250 \text{ L}$ (25.0 mL). Calculation from moles to volume; use of incorrect moles still earns point.

b)

There are two successive dissociations: $H_2C_2O_4 <==> H^+ + HC_2O_4^-$ (equilibrium constant = K₁) $HC_2O_4^- <==> H^+ + C_2O_4^{2^-}$ (equilibrium constant = K₂) Acceptable alternatives are the use of H₂O as reactant and H₃O⁺ as product or writing of correct equilibrium constant expressions. Consistent errors (such as missing atoms or charges) are only penalized once.

c)

pH = 0.5 therefore H⁺ = 0.32M (pH controls 1 sig. fig. in answer) (This point also earned if conversion of K to pK is correct.) K small therefore amount of dissociation small therefore assume $[H_2C_2O_4] = 0.015$ $K_{12} = ([H⁺]^2 [C_2O_4^{2^-}]) / [H_2C_2O_4]$, then $[C_2O_4^{2^-}] = [(3.78 \times 10^{-6}) (0.015)] / (0.32)^2 = 6 \times 10^{-7}$.

(Here 1, 2, or 3 sig. fig.'s accepted) Two points for correct set-up with substitution and final calculation (-1 point for each error).

Alternative methods, included proper use of Henderson-Hasselbalch equation, can earn credit.

(d)

 $C_2O_4^{2^-}$ + H₂O <===> HC₂O₄⁻ + OH⁻ is the only significant reaction, so Kb= Kw / K2 = 1.00 x 10⁻¹⁴ / 6.40 x 10⁻⁵ = 1.56 x 10⁻¹⁰ No credit earned if K₁ or K₁₂ used; 1, 2, or 3 sig. fig.'s accepted since number of significant figures for value of Kw not indicated in table on examination.

20.
$$CH_3 NH_2 + H_{20} \implies CH_3 NH_3^{+} + 0H^{-}$$

A. $3e^{+5} K_0 = \frac{CeH_3 NH_3^{+}]COH^{-}]}{CeH_3 NH_2]} = 5.24 \times 10^{-4}$
 $\frac{CeH_3 NH_2 }{CeH_3 NH_3 } COH^{-}]$
1 0.225 0 0 0
 $c - x + x + x + x$
 $5.25 \times 10^{-4} = \frac{X^2}{0.225}$
 $\chi = COH^{-}] = 1.09 \times 10^{-2}$

B. <u>3 + 5</u>

N05)

D.DIDO MDL
$$(CH_3 \wedge H_3^+) ($$

120.0 M 0,225 CH3 $\wedge H_3^+) ($
 $(CH_3 \wedge H_3^+) = \frac{0.0100 \text{ molg}}{0.0202} = 0.0833 \text{ M}$
 $5.25 \times 10^{-4} = (0.0833) (\times)$
 (0.225)
 $X = [OH^-] = 1.42 \times 10^{-3} \text{ M}$
 $\text{poH} = 2.85 \text{ pH} = 11.15$
 $\text{pH} = \text{pKa} + \log \frac{baH}{acd}$
 $\text{pH} = 10.7 + 0.225$
 0.0833

C.
$$ZPHS$$

Want $PH = 11$ (NOOH or $H(1)$)
 $HCI addad
 $PH = PKa + \log \frac{best}{acad}$
 $Hog = 0.72 + \log \frac{bre}{acad}$
 $\log = 0.78 \frac{base}{acad} = 1.906 - \frac{(CH_3NH_3^4 - x)}{(CH_3NH_2 + x)}$
 $X = 0.0227M$
 $(0.0227M)(0.1202) = 2.73 \times 10^{-3} mole HCI$$

21.
$$H_2 C_2 O_4 = 2H^4 \pm C_2 O_4^{-2} K = 3.78 \times 10^{-6}$$

A. 0.400 M NOOH 5.00 × 10⁻³ mole HA
5.00 × 10⁻³ mole HA produces 1.00 × 10⁻² mole H⁴
(diprotie)
1.00 × 10⁻² mole H⁴ needs 1.00 × 10⁻² mole 04⁻¹
1.00 × 10⁻² mole 0H⁻ = 0.0250L (25.0ml)

B.
$$K_2 = 6.46 \times 16^{-3}$$

 $H_2 C_2 O_Y \Longrightarrow H^+ + H C_2 O_Y^- K_1$
 $H C_2 O_Y^- \longrightarrow H^+ + C_2 O_Y^{-2} K_2$
 $K = K_1 \times K_2$

D. $C_{2}O_{4}^{-2} + H_{2}O_{2} = HC_{2}O_{4} + O_{4} - K_{5} = \frac{K_{2}}{K_{2}} = \frac{1-00 \times 10^{-14}}{6.40 \times 10^{-5}} = 1.56 \times 10^{-10}$