Name \qquad Date \qquad

Review

Define the following:
Qualitative observations - requires no measurement
Quantitative observations - requires measurement
Element - made of one type of atom
Compound - chemical combination of two or more different atoms
Homogeneous mixture - a mixture that is the same throughout, a solution
Heterogeneous mixture - a mixture that is not uniform throughout
Mass - amount of matter in an object
Volume - amount of space an object occupies
Density - mass per unit volume
Classify the following as qualitative or quantitative observations:

$w a r m$	5.0 g	solid

Identify as a physical or chemical property:
a) the boiling point of a certain alcohol is $78^{\circ} \mathrm{C}$
b) diamond is very hard
c) sugar ferments to form alcohol
d) a metal conducts an electric current

Identify as a physical or chemical changes:
a) iron metal is melted
b) iron combines with oxygen to form rust
c) wood burns in air
d) a rock is broken into small pieces

Graphing questions:

9. A student graphed the following data:

a. Determine the density of each substance. Show all your work and include appropriate units.

Material A:
$(60.0 \mathrm{~g}-0.0 \mathrm{~g}) /\left(11.0 \mathrm{~cm}^{3}-0.00 \mathrm{~cm}^{3}\right)=5.45 \mathrm{~g} / \mathrm{cm}^{3}$
Material B:
$(90.0 \mathrm{~g}-0.0 \mathrm{~g}) /\left(8.00 \mathrm{~cm}^{3}-0.00 \mathrm{~cm}^{3}\right)=11.3 \mathrm{~g} / \mathrm{cm}^{3}$

b. From the graph, estimate

1. the mass of $6.0 \mathrm{~cm}^{3}$ of material B. 66.0 g
2. the volume of $40 . \mathrm{g}$ of material $\mathrm{A} \underline{7.2 \mathrm{~cm}^{3}}$
3. mark on the graph how you found the answers above
c. Use the densities of the two substances as factors to determine the answers to \mathbf{b}. Show work and how the units cancel.
4. $m=d \times v$
$\left(11.3 \mathrm{~g} / \mathrm{cm}^{3}\right) \times\left(6.0 \mathrm{~cm}^{3}\right)$
67.8 g
5. $v=m / d$
(40.g)/ $\left.5.45 \mathrm{~g} / \mathrm{cm}^{3}\right)$
$7.3 \mathrm{~cm}^{3}$
6. Ethanol has a density of $0.789 \mathrm{~g} / \mathrm{cm}^{3}$.
a. What is the mass of $225 \mathrm{~cm}^{3}$ of ethanol?

$$
\begin{aligned}
\mathrm{m}= & \mathrm{dx} \mathrm{v} \\
& \left(0.789 \mathrm{~g} / \mathrm{cm}^{3}\right) \times\left(225 \mathrm{~cm}^{3}\right) \\
& 178 \mathrm{~g}
\end{aligned}
$$

b. What is the volume of 75.0 g of ethanol?
$\mathrm{v}=\mathrm{m} / \mathrm{d}$
$(75.0 \mathrm{~g}) /\left(0.789 \mathrm{~g} / \mathrm{cm}^{3}\right)$
$95.1 \mathrm{~cm}^{3}$
11. What is the density of water in g / mL ? Why?
$1 \mathrm{~g} / \mathrm{ml}$ because every ml has a mass of 1 gram
12. The cup is a volume widely used by cooks in the US. One cup is equivalent to $225 \mathrm{~cm}^{3}$. If 1 cup of olive oil has a mass of 205 g , what is the density of olive oil in $\mathrm{g} / \mathrm{cm}^{3}$?

$$
\begin{aligned}
& 1 \text { cup } \frac{225 \mathrm{~cm}^{3}}{1 \mathrm{cup}}=225 \mathrm{~cm}^{3} \\
& \mathrm{D}=\frac{\mathrm{m}}{\mathrm{~V}}=\frac{205 \mathrm{~g}}{225 \mathrm{~cm}^{3}}=0.911 \mathrm{~g} \\
& \mathrm{~cm}^{3}
\end{aligned}
$$

Gold has a density of $19.4 \mathrm{~g} / \mathrm{cm}^{3}$. A cube of gold measures 4.23 cm on each edge:
14. What is the volume of the cube?

$$
\begin{aligned}
\mathrm{v}= & 1 \times \mathrm{x} \times \mathrm{h} \\
& (4.23 \mathrm{~cm})(4.23 \mathrm{~cm})(4.23 \mathrm{~cm}) \\
& 75.7 \mathrm{~cm}^{3}
\end{aligned}
$$

15. What is its mass? How many significant figures should you include in your answer and why?
```
m = dxv
    (19.4 g/cm}\mp@subsup{}{}{3})\times(75.7 \mp@subsup{\textrm{cm}}{}{3}
    1470 g
```

