Name \qquad Date \qquad
In this section, you are only going to start the problem by identifying the type of problem and writing the chemical equation for the following substances dissolved in water:

1. Aceticacid $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-$
2. Perchloric acid

$$
\mathrm{HClO}_{4} \longrightarrow \mathrm{H}+\mathrm{CiO}_{4}^{-}
$$

3. Ammonia

$$
\mathrm{NH}_{3}+\mathrm{H} \sim \omega \mathrm{NH}_{4}^{+}+\mathrm{OH}
$$

4. Sodium hydroxide

$$
\mathrm{NaOH} \longrightarrow \mathrm{Na}^{+}+\mathrm{OH}
$$

5. $\mathrm{N}_{2} \mathrm{H}_{4}$

$$
\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~N}_{2} \mathrm{H}_{5}^{+}+\mathrm{O}+1-
$$

6. Ammonium chloride $\mathrm{NHYCH}_{\mathrm{Cl}} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$ $\sim \mathrm{Ha}^{+} \Rightarrow$ NJ $+\mathrm{n}^{+}$
7. Lithium fluoride $L \cdot F \longrightarrow L_{i}+\rightarrow f=$ Fo + Hz $\overrightarrow{\mathrm{F}} \mathrm{HF}+\mathrm{OH}$
8. Potassium nitrite

$$
\begin{aligned}
& \mathrm{KNO}_{2} \rightarrow \mathrm{~K}^{+}+\mathrm{NO}_{2}^{-} \\
& \mathrm{NO}_{2}^{-}+\mathrm{H} 2 \mathrm{H} \longrightarrow \mathrm{HO}_{2}+\mathrm{OH}-
\end{aligned}
$$

9. Sodium acetate $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Na}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-$

$$
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}
$$

10. Phosphoric acid

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}=\mathrm{H}+\mathrm{H}_{2} \mathrm{PO}_{4}- \\
& \mathrm{H}_{2} \mathrm{PO}_{4}=\mathrm{H}+\mathrm{PO}_{4}+\mathrm{PO}_{4}^{-2} \\
& \mathrm{HPO}_{4}{ }^{2}=\mathrm{Ha}+\mathrm{PO}_{4}^{-3}
\end{aligned}
$$

Calculate the pH of the following 0.50 M solutions:

1. Hydrochloric acid
2. Chlorous acid
3. Ammonia
4. Sodium hydroxide
5. Sodium fluoride
6. Ammonium nitrate
7. Formic acid (HCOOH) and Hypobromous acid (HOBr)
8. Phosphoric acid

$$
\begin{aligned}
& \mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \\
& {[\mathrm{HCD}]=\left[\mathrm{H}^{+}\right]=0.50} \\
& p H=-10 g(0.50)=0.30
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
r_{a}=\frac{\left[\mathrm{H}_{+}\right]\left[\mathrm{CNO}_{2}^{-}\right]}{\left[\mathrm{HCOU}_{2}\right]} \\
1.2 \times 10^{-2}=\frac{x^{2}}{.0 .50-x} \\
x=0.077 \mathrm{M}=\left[\mathrm{H}^{+}\right] \\
50.0 \frac{0.077}{0.50} \times .00=1500
\end{array}
\end{aligned}
$$

3)

$$
\begin{aligned}
& k_{6}=\frac{\left(\sim H_{+}+\right)\left[\mathrm{OH}^{-}\right]}{\left[\sim \mathrm{H}_{3}\right]} \\
& 1 . \delta \times 10^{-1}=\frac{x^{2}}{0.50=x} \\
& x=3.0 \times 10^{-3}=\left[0 \mathrm{H}^{-}\right] \\
& \text {sa. } \frac{3.0 \times 10^{-3}}{0.50} \times .00=0.640 \\
& \text { POH }=-\log \left(3.0 \times 10^{-3}\right)=2.52 \\
& p H=14-2.52=11.48
\end{aligned}
$$

4) NCOH $\rightarrow \mathrm{NO}^{+}+\mathrm{OH}^{+}$

$$
\begin{aligned}
& {[\text { NOOH }]=[\triangle H-]=0.5 U M} \\
& \text { POH }=-105(0.50)=0.30 \\
& P H=14-0.70=13.70
\end{aligned}
$$

S) $\mathrm{NaF} \rightarrow \mathrm{Nat}+\mathrm{F}=$

$$
\begin{aligned}
& F \cdot+H \approx H F O H= \\
& 10.50 \\
& \text { < - } x \\
& \text { E } 0.50=x \\
& K_{b}=\frac{[H F]\left[O H^{-}\right]}{\left.C F^{-}\right]} \\
& 1.38 \times 10^{\prime \prime}=\frac{x^{2}}{0.50-x} \\
& x=2.64 \times 00^{-6} \mathrm{M}=\left(\mathrm{OH}^{-}\right) \\
& \text {S\%o } \frac{2.64 \times 00^{-6}}{0.60} \times 100=5.27 \times 10^{-4} \% \\
& \text { POH }=-\log \left(2.64 \times 10^{-6}\right)=5.5 \delta \\
& p H=8.42
\end{aligned}
$$

6) $\sim \mathrm{H}_{4} \sim \mathrm{O}_{3} \rightarrow \mathrm{HH}_{4}^{+}+\mathrm{NO}_{3}-$

$$
\begin{aligned}
& 1-x \\
& \text { E O.Su-x } \\
& +x \\
& +x \\
& x \\
& \lambda \\
& K_{a}=\frac{\left[\sim H_{3}\right][H+]}{\left[\sim H^{-1}\right]} \\
& r_{a}=\frac{r_{\omega}}{k_{b}}: \frac{1.0 \times 10^{-97}}{1.8 \times 10^{-5}}=5.56 \times 10^{-10} \\
& 5.56 \times 10^{-10}=\frac{x^{2}}{0.50-x} \\
& x=1.7 \times \infty=5 \sim=\left[H^{+}\right] \\
& \text {son. } \frac{1.7 \times 10^{-5}}{0.10} \times 1.7 \times 10^{-2} 20 \\
& p H=-105\left(1.7 \times 10^{-r}\right)=4.77
\end{aligned}
$$

7. $\mathrm{HCOOH} \rightleftharpoons \mathrm{H}^{+} \quad \begin{array}{r}+ \\ \mathrm{KCOH}_{2}=1.8 \times 10^{-4}\end{array}$

HoBr $\rightleftharpoons \mathrm{H}_{\mathrm{C}}+\mathrm{OBF}-$

$$
k_{a}=2 \times 10^{-9}
$$

$$
\begin{aligned}
& \gamma_{a}: \frac{\left[H^{-1}\right][00 H]}{[\text { CoveH }} \\
& 1.8 \times 10^{-4}=\frac{x^{2}}{0.50-x} \text {. } \\
& x=9.5 \times 10^{-3} \mathrm{M}=\left[\mathrm{H}^{+}\right] \\
& =\left[\mathrm{COOH}^{-}\right] \\
& p t==10 y
\end{aligned}
$$

$$
\begin{aligned}
& \text { <-x }+x_{-3}+x \\
& E 0.50-x \quad 9.5 \times 10^{-3}+x \\
& K_{G}=\frac{[H+]\left[\cup B_{5}^{-}\right]}{[4 \cup B 5]} \\
& 2 \times 10^{-9}=\frac{\left(9.5 \times 10^{-3}-2\right)(x)}{0.50-x)} \\
& x=1.05 \times 10^{-7} \mathrm{~m} \\
& \left(0 B r^{-}\right) \\
& 570 \\
& \frac{1.05 \times .5}{9.8 \times 10^{-3}}= \\
& 0.1190
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{CO}_{3} \\
& \mathrm{H}^{+} \\
& 0 \\
& +x \\
& x \\
& x \\
& \text { E O. Su }-x \\
& K_{a}=\frac{\left.[\mathrm{H}+] \mathrm{CH}_{2} \mathrm{PO}_{4}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]} \\
& 4.3 \times 10^{.7}=\frac{x^{2}}{50-2} \\
& x: 4.6 \times 10^{-4} \mathrm{M}=\left[\mathrm{H}^{+}\right] \\
& \sin \frac{4.6 \times 10^{-4}}{0.50} \times 100=0.09 \pi_{0}
\end{aligned}
$$

