1. What is the concentration of beryllium ions in a saturated solution of beryllium hydroxide? Kip

$$
\begin{aligned}
& K_{S p}=\left[B e^{-2}\right][\cup H-]^{2} \\
& 1-S \& \times 10^{-22}=(x)(2 x)^{2} \\
& 1 . S \& \times 10^{-22}=4 \times 3 \quad x=3.41 \times 10^{-8}=\left[B e^{-2}\right]
\end{aligned}
$$

2. If the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is $7.2 \times 10^{-5} \mathrm{M}$, what is the Ksp ?
3. Find the Ksp of BaCl_{2} if 0.095 grams can be recovered from 1.0 liter of a saturated solution.
4. If the Ksp of CuCO_{3} is 1.7×10^{-7}, how many grams could be recovered from 2.0 liters of a saturated solution?

$$
K_{S p}=\left[c_{n}+2\right]\left[0_{3}^{-2}\right]
$$

$$
1.7 \times 10^{-7}=x^{2}
$$

$$
x=4.12 \times 10^{-4} \mu
$$

5. If 1.00 liter of 0.0200 M NaCl is added to 1.00 liter of $0.0100 \mathrm{M} \mathrm{AgNO}_{3}$. Will a precipitate of AgCl form? Show all work to prove your answer!

$$
\begin{aligned}
& \mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cr}^{-} \\
& \left(0.0200 \sim \sim_{1}\right)=(1.00<)_{2}=\times(2.00 L) \\
& \mathrm{AgNO}_{3} \rightarrow \mathrm{As}^{+}+\mathrm{NO}_{3}^{-} \\
& \begin{array}{c}
0.0200 \sim 1)^{-}(1.00 c)^{2}= \\
0.0100 M \mathrm{Cl}=
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& K_{s p}=\left(A_{s}+\right]\left[c^{-}\right]=(0.00500)(0.0100) \\
& K_{s p}<\infty \quad y \in s \quad Q=s \times \sim-\delta
\end{aligned}
$$

$$
\begin{aligned}
& \text { mum }=\left(4.12 \times 10^{-4}\right)(2-02)=8.24 \times 10^{-4} m 6 \\
& 8.24 \times 10^{-4} \mathrm{~mol} \frac{23.56 \mathrm{~g}}{1 \mathrm{mog}}=0.10 \mathrm{~g} \mathrm{Culos}
\end{aligned}
$$

$$
\begin{aligned}
& 0.095 \mathrm{gecl} \mathrm{cl}_{2} \frac{1 \mathrm{~mol}}{208.23 \mathrm{~s}}: \frac{4.56 \times 10^{-7} \mathrm{~mol}}{1.02}=4.56 \times 00^{-4} \mathrm{M} \\
& \left.\mathrm{BaCl}_{2 \mathrm{C}} \rightleftharpoons \mathrm{Ba}^{+2}+2\right)+2 \mathrm{Cr}^{-}<{ }_{C} \\
& \begin{array}{l}
K S P=\left[\mathrm{Ba}^{+2}\right]\left[\mathrm{Ci}^{-}\right]^{2} \\
=\left(4.56 \times 10^{-4} \mathrm{~m}(2.4 .56 \times 10)^{2}=3.79 \times 10^{-10}\right.
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Ag}_{2}\left(\mathrm{rO}_{4(5)} \rightarrow 2 \mathrm{As}_{22}^{+}+\mathrm{CrO}_{4}^{-2} \mathrm{Cl}_{2}\right. \\
& K_{S_{p}}=\left[\text { As }^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{-2}\right] \\
& =\left(2 \cdot 7.2 \times 10^{-5}\right)^{2}\left(7.2 \times \cdot 0^{-5}\right) \\
& =7.46 \times 10^{-13}
\end{aligned}
$$

6. What is the half-life of a radioactive isotope if a 500.0 g sample decays to 62.5 g in 24.3 hours?

500

$$
\begin{aligned}
& \vec{\omega} 250 \overrightarrow{(2} \text { half live } 12 \\
& \frac{24.3 \mathrm{hss}}{3}=8.1 \mathrm{hrs}
\end{aligned}
$$

7. 6 . How old is a bone if it presently contains 0.3125 g of $\mathrm{C}-14$, but it was estimated to have
originally contained 80.000 g of $\mathrm{C}-14$ (half life $=5730 \mathrm{yr}$)?

8 half lias

$$
8 \times 5730=45,840 \text { hos }
$$

8. How long does it take a 100.00 g sample of Au-I 98 to decay to 6.25 g (half life $=2.69$ days)?

$$
\begin{aligned}
& 100 \underset{(1)}{\rightarrow} 50 \underset{(2)}{\rightarrow} 25 \underset{(3)}{\rightarrow} 12.5 \underset{(5)}{\rightarrow} 6 \\
& 4 \text { half liner } \\
& 4 \times 2.69=10.76 \text { dar } S
\end{aligned}
$$

9. The remnants of an ancient artifact in a cave in Africa showed a ${ }^{14} \mathrm{C}$ decay rate of 1.2 counts per minute per gram of carbon. Assuming that the decay rate of ${ }^{14} \mathrm{C}$ in a freshly cut wood is 13.6 counts per minute per gram of carbon, calculate the age of the artifact. The half life of ${ }_{6}{ }_{6} \mathrm{C}$ is 5730 years:
a. Calculate the rate constant
b. Calculate the time using the integrated rate law equation

$$
\begin{aligned}
t_{i} & =\frac{0.693}{k} & & \ln \frac{C A]}{[A 0 J}=-\mu t \\
k & =\frac{0.693}{t_{1}} & & \ln \frac{(1.2)}{(13.6)}=\left(-1.21 \times 10^{-4}\right)(t) \\
& =\frac{0.693}{5330} & & \frac{-2.43}{-1.21 \times 10^{-11}}=\frac{\left(-1.21 \times 10^{-4}\right)(t)}{-1.21 \times 10^{-4}} \\
& =1.21 \times 10^{-4} & & t=20,083 \text { years } 0 . a
\end{aligned}
$$

10. Which of the following involve an increase in the entropy of the system:
a. Melting of a solid
b. Sublimation
c. Freezing
d. Mixing
e. Separation
f. Boiling
11. Predict the sign on $\Delta \mathrm{S}_{\text {surr }}$ for the following processes:
a. $\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{H}=-2221 \mathrm{~kJ}$
b. $2 \mathrm{NO}_{2) \mathrm{g})} \rightarrow 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=112 \mathrm{~kJ}$
12. Given the following $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$, which of the following changes will be spontaneous at constant T and P ?
a. $\Delta \mathrm{H}=+25 \mathrm{~kJ}, \Delta \mathrm{~S}=+5.0 \mathrm{~J} / \mathrm{K}, \mathrm{T}=300 \mathrm{~K}$
b. $\Delta H=-10 \mathrm{~kJ}, \Delta \mathrm{~S}=-40 \mathrm{~J} / \mathrm{K}, \mathrm{T}=200 \mathrm{~K}$
13. For the reaction

$$
\mathrm{CS}_{2(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{SO}_{2(\mathrm{~g})}
$$

ΔS^{0} is equal to $-143 \mathrm{~J} / \mathrm{K}$. Use the values on the table to calculate the value of S^{0} fo CS_{2}
14. Consider the reaction

$$
2 \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{O}_{2(\mathrm{~g})}
$$

a) Predict the signs on $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$
b) Would the reaction be more spontaneous at high or low temperatures? Explain.
15. Balance the following REDOX reactions
$\mathrm{Cu}_{(\mathrm{s})}+\mathrm{NO}_{3}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Cu}^{+2}{ }_{(\mathrm{aq})}+\mathrm{NO}_{(\mathrm{g})}$ in an acidic solution
$\mathrm{NO}_{2}^{-}{ }^{-}\left(\mathrm{aq)}+\mathrm{Al}_{(\mathrm{s})} \rightarrow \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{AlO}_{2}^{-}{ }_{(\mathrm{aq})}\right.$ in a basic solution
16. Sketch and label all the parts of the following galvanic cell, calculate the voltage across the cell and give the standard line notation
$\mathrm{Zn}_{(\mathrm{s})}+\mathrm{Ag}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Zn}^{+2}{ }_{(\mathrm{aq})}+\mathrm{Ag}_{(\mathrm{s})}$
17. Use the reduction potential table to determine the order of increasing strength as reducing agents

$$
\mathrm{Cu}+, \mathrm{F}^{-}, \mathrm{H}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{I}_{2}, \mathrm{~K}
$$

18. Consider the cell described below:

$$
\mathrm{Zn}\left|\mathrm{Zn}^{+}(1.00 \mathrm{M})\right|\left|\mathrm{Cu}^{+2}(1.00 \mathrm{M})\right| \mathrm{Cu}
$$

Draw and label the cell. Write the balanced redox reaction. Calculate the initial cell potential
19. How long will it take to plate out 1.0 g Ni from Ni^{+2} solution with a current of 100.0 A ?
20. What mass of Co will plate out from a Co^{+2} solution in 1.0 hour with a current of 15 A ?

Classification

1. $\left.\right|_{\mathrm{C}-\mathrm{C}} ^{\mathrm{C}}-\stackrel{\mathrm{C}}{\mid}-\mathrm{Br}$

2. $\mathrm{C} \equiv \mathrm{C}-\mathrm{C}-\mathrm{C}$

\qquad

\qquad

Name

$$
\begin{array}{ll}
1 & 1 \\
\mathrm{C} & \mathrm{C}
\end{array}
$$

9. $\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{C}$
\qquad 10. $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$
10. $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}=\mathrm{O}$
11. $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$

Draw the condensed structural formula and the skeletal formula for the following

pentanioc acid	Ethyl propanoate	trichloromethane
tetramethylbutane	hexane	2-propanol
3-hexyne	3-methyl-2-pentene	2,3-pentadiene
		3-ethyl-1-heptene
2,3-dimethylpentane	1-methyl-3-propylcylcopentane	

1,2,3,4-tetrachlorobenzene	2-heptanone	Methanal

