Name _

REVIEW FOR TEST

1. Use the following data to estimate ΔH^{o}_{f} for sodium chloride.

 $Na_{(s)} + \frac{1}{2} Cl_{2(g)} \rightarrow NaCl_{(s)}$

- Lattice energy-786 kJIonization energy for Na495 kJ/Electron affinity of Cl-349 kJ/Bond energy of Cl2239 kJ/Enthalpy of sublimation for Na109 kJ/
- -786 kJ/mol 495 kJ/mol -349 kJ/mol 239 kJ/mol 109 kJ/mol

2. Write out the Lewis Dot Diagrams for the reactants and products of the following reaction:

Use the bond energy table to calculate the enthalpy change for this reaction

= [4(C-H) + 1(C=C) + 1(F-F)] - [2(C-H) + 2(C-F) + 1(C=C)]= [4(413) + 1(C(1)) + (154)] - (2(413) + 2(4F)) + 1(C+V)] = (2420) - (2410)

3. Consider the following bond lengths:

C-0	143 pm
C=O	123 pm

C=O 109 pm

In CO3²⁻ ion, all three C-O bonds have identical bond lengths. Why? What would be a good estimation of that bond length and why? $\vdots \ddot{o} - \dot{c} = \dot{o} \cdot \vec{j} = \vec{j} = \vec{j} = \vec{c} - \vec{o} \cdot \vec{j} = \vec{j} = \vec{c} - \vec{o} \cdot \vec{j} = \vec{c} - \vec{c} -$

4. Distinguish between a covalent bond, polar covalent bond and ionic bond

- staring equally - no dipose - dipose
- 5. Using periodic trends, predict the order of increasing electronegativity in each of the following groups of elements

Na

- a) Na, K, Rb b) B, O, Ga c) F, Cl, Br
- c) F, Cl, Br d) S, O, F
- 6. List 5 ions that are isoelectronic to neon and order them by increasing size

AIt' < Mgt ~ Nat LNe CF CO CN-3

Formula	Lone pairs on central atom	Bonding pairs on central atom	Geometry	Hybridization	# of sigma bonds	# of pi bonds
BF ₃						
NH ₃						
CO3 ⁻²						
BrF ₅						
$\mathrm{IF_{4}^{+}}$						
PCl ₅						

Formula	Lone pairs on central atom	Bonding pairs on central atom	Geometry	Hybridization	# of sigma bonds	# of pi bonds
SO ₂						
PO ₄ -3						
H ₂ O						
ICl ₃						
SF ₆						
ICl4 ⁻						