1) How would you prepare $500 . \mathrm{mL}$ of a 0.025 M solution of potassium permanganate?

$$
\begin{array}{ll}
\mu=\frac{m \sim 1}{L} \\
0.025 \mu=\frac{x}{0.500 L}
\end{array} \quad 0.0125 m u 6 \frac{15 \delta-0 U_{8}}{1 \mathrm{mou}}=
$$

$1.9 \mathrm{fg} \mathrm{km} \mathrm{\sim on}$ in a total of suns
2) How would you prepare 1.0 L of 5.0 M HCl from a 12 M stock solution?

$$
\begin{gathered}
\mu \cdot v_{1}=(\underset{\sim}{n}(x)=(5-\sim \sim)(1-02) \\
(12=42 n
\end{gathered}
$$

aust 42 ml of 12 m th er to tote of J. 62
3) How many grams of silver chloride can be prepared by the reaction of 100.0 mL of 0.10 M silver nitrate with 100.0 mL of .20 M NaCl ? Calculate the concentration of each ion remaining in solution after precipitation is complete.

$$
\begin{aligned}
& \underset{\text { loconl }}{\mathrm{AgNO}_{3}}+\underset{100 \mathrm{OLOM}}{\mathrm{NaCl}} \rightarrow \mathrm{~A}_{5} \mathrm{CH}+\mathrm{NaNO}_{3} \\
& \text { mow }=(0.10 \text { M })(0.10004) \\
& 0.010 \text { mole } \\
& 0.20 \mathrm{M} \\
& \left.\begin{array}{c}
\text { mol } \\
0.020
\end{array}\right)(0.20 \mathrm{~m})(0.1000 \mathrm{~L}) \\
& 0.020 \text { - - }
\end{aligned}
$$

$$
\begin{aligned}
& 1.4 \mathrm{~g} \text { AsCi precuputeres } \\
& {\left[\mathrm{As}^{+}\right]=6 \mathrm{M}} \\
& {\left[\mathrm{NO}_{3}\right]=\frac{0.020 \mathrm{mot}}{0.2000 \mathrm{C}}=0.10 \mathrm{M} \quad \mathrm{Ag}^{+}+\mathrm{Ci}^{-} \rightarrow \mathrm{AsCl}} \\
& {[\text { net }]=\frac{0.010 \mathrm{~mol}}{0.20002}=0.050 \mathrm{~m}-\begin{array}{rrr}
0.010 & 0.020 \\
-0.010 & 0.010 \\
0.020
\end{array}} \\
& 0 \quad 0.020 \\
& {\left[\mathrm{Cl}^{-}\right]=\frac{0.010 \mathrm{~mol}}{0.2000 \mathrm{~L}}=0.050 \mathrm{M}}
\end{aligned}
$$

4) Write the balanced, molecular equation for the reaction. A precipitate may not form in all cases. If a precipitate, does form, please write the complete ionic and net ionic equation.

5) Balance the following redox reactions in an acidic solution. Identify the substance being oxidized and reduced, as well as the oxidizing and reducing agent.

6) A 100.0 mL aliquot on 0.250 M aqueous lead (II) nitrate is mixed with 100.0 mL of 0.200 M aqueous sodium iodide.
A. Write the balanced chemical equation for any reaction that occurs.
B. What precipitate forms?
C. What mass of that precipitate is produced?
D. What is the concentration of the ions that are remaining?

$$
\begin{aligned}
& 0.250 \mathrm{~m} \\
& 0.200 \mathrm{M} \\
& \bmod =(0.2 \operatorname{sim})(0.1000 \mathrm{~d}) \mathrm{male}=(0.200 \mathrm{~m}(0.1000 \mathrm{~L}) \\
& =\frac{0.0250 \mathrm{mos}}{1} \\
& =\frac{0.0200 \mathrm{mel}}{2} \\
& \text { "units }
\end{aligned}
$$

$$
\begin{aligned}
& {[\mathrm{PD}+2]=\frac{0.015 \mathrm{~mol}}{0.2000 \mathrm{~L}}=0.0750} \\
& {\left[\mathrm{NO}_{3}\right]=\frac{0.0250 \mathrm{mu}}{0.2000 \mathrm{~L}}=0.125 \mathrm{~m}} \\
& {\left[\mathrm{Na}^{+}\right]=\frac{0.0200 \mathrm{muT}}{0.2000 \mathrm{~L}}=0.100 \mathrm{~m}} \\
& {[I-]=0 M} \\
& \mathrm{~Pb}+2+ \\
& \underset{1.0200}{2-r b I_{2}} \\
& c-0.010 \\
& \text { E 0.015 }
\end{aligned}
$$

